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A self-similar solution with shock wave is found for the Lagrange 
equations of motion of a perfect gas in which energy is released. This 
solution is continued by means of a difference scheme. 

This  paper  is concerned  with a gasdynamic  model 
of the p roce s s  of sub l imat ion  of a wall  located in a 
vacuum in the p r e s e n c e  of energy  r e l ea se  in the wall  
m a t e r i a l .  The s imula t ion  of the p roces s  is divided 
into two pa r t s :  1) ca lcu la t ion  of the d i spe r s ion  of the 
gaseous products  with s imul t aneous  energy  r e l e a s e ,  
and 2) ca lcu la t ion  of the gas flow af ter  the energy  
sources  have ceased  to act.  The funct ion Q which de -  
s c r i be s  the power of the sources  is so se lec ted  that 
the decomposi t ion  of the wall  p roceeds  at a cons tant  
r a te .  In this case ,  the f i r s t  of the two p rob l ems  m e n -  
t ioned above is s e l f - s i m i l a r ,  and i ts  Solution r educes  
to o rd ina ry  d i f ferent ia l  equat ions ; the second p rob lem 
employs  the r e s u l t s  of.the solut ion of the f i r s t  as in -  
i t ia l  data.  

1. F o r m u l a t i o n  of the p rob l em.  We have to solve 
the sys t em of equat ions de sc r ib ing  the mot ion of a 
per fec t  gas in which energy  is r e l ea sed :  

c)u + Op OV Ou O, 
o--i- G = o, ot o~  

Y Os og 
at + ~ P ~  - = 0 / -  I )Q (1) 

On one side the gas is bounded by the sub l imat ion  s u r -  
face;  on the other i ts  boundary  is f ree  (Fig. 1). At the 
f ree  boundary  

p = 0 ,  p=O at m = 0 .  (2) 

2. S e l f - s i m i l a r  r e g i me .  The ini t ia l  ins tan t  of gas 
phase fo rma t ion  is denoted by t = 0. The point  m = 
= 0, t = 0 is a s ingu la r  point of the solut ion of p rob -  
lem (1)-(3) ; at this point, the p a r a m e t e r s  of the gas 
a re  not uniquely de te rmined ,  s ince  both boundar ies  
which f igure  in the condit ions of the p rob lem pass  
through the point.  This  p rompts  us to seek a se l f -  
s i m i l a r  solut ion.  

The dependence of Q on m and t is a s sumed  to take 
the fo rm 

Q = c t r t  - a  t a - l ,  (5) 

which for 0 < (~ < 1 e xp r e s se s  the dec rea se  in the en -  
e rgy  r e l eased  with r e spec t  to m a s s  and t ime.  Then 
the de t e rmin ing  p a r a m e t e r s  of the p rob lem a r e  

m, t, Px, R T ,  es, C, a, ~. 

Apart  f rom m and t, the re  a re  only two cons tants  with 
independent  d imens ions ;  consequent ly ,  for such e n e r -  
gy r e l e a se  the p rob lem has a s e l f - s i m i l a r  solut ion.  

F r o m  Eq. (4) with c~ > 0 it follows that the phase 
in te r face  moves  un i fo rmly  into the sub l iming  ma te r i a l :  

f (t) = Dr, 

where 

D = (a es) -I/" C TM 

is the m a s s  veloci ty of the in te r face .  F r o m  the c o r -  

The condit ions at  the sub l imat ion  sur face  include 
the m a s s  ba lance  equat ion and the t e m p e r a t u r e  con-  
di t ion 

p ( w - - u ) = p t w ,  p = R p T I  at m = f ( t ) .  (3) 

The posi t ion  of the phase in te r face  is de t e rmined  
f rom the equation 

t 

.f ~ (f (t), t) a t  = ~ + c, (Vl - -  70) ~ es  
0 

(4) 

The sub l imat ion  t e m p e r a t u r e  T 1 is a s s u m e d  known 
and independent  of p r e s s u r e .  For  many  actual  m a -  
t e r i a l s ,  this dependence is so weak that it  can be 
neglec ted .  

m u I 

1 
0 OCs 

Fig. 1. Var ia t ion  of the pos i t ion  of the ga s - so l i d  
boundar i e s :  I) sol id;  II) gas;  III) vacuum.  
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responding  exp res s ion  for C we can obtain an e x p r e s -  
s ion for the function Q co r re spond ing  to mot ion of the 
in te r face  at a given veloci ty  D: 

Q = a e ~ D = r n ~ t  ~-~ (a > 0). 

The choice of the independent  d imens ion l e s s  p a r -  
a m e t e r  ~ and the dependent  p a r a m e t e r s  U, v, and P 
is  de t e rmined  by the re la t ions  

= D -~ mt-~, U = UoU, V = VoO, p = po p , (6) 

where  

uo = V1 D, Po = VI D~, 1 /o=V~.  

Since a /0 t  = - ( ~ / t ) ( d / d ~ ) ,  O/Om = (~/m) (d/d~), s y s -  
tem (1) can be rep laced  by a s y s t e m  of th ree  o rd ina ry  
di f ferent ia l  equations:  

- - ~ U ' + P ' = O ,  ~o' + U ' = O ,  

vP" + y Pv' = - - q  ~-~-~, (7) 

where 

q = a (Y - -  l )e~V~ zD- ' .  

In d imens ion l e s s  form,  the boundary  condit ions 
(2) and (3) become 

P = O ,  v - 1 = 0  at ~ = 0 ,  

U = 1 --v,  Pv = T at ~ = 1. (8) 

Here,  r = RTlpolVo * is the d imens ion l e s s  sub l imat ion  
t e m p e r a t u r e .  

3. Solution in  the neighborhood of ~ = 0. Wri t ing  
sys t em (7) in the no rma l  form,  

v ' = q ~ - a - ' h - 1 ,  p , =  _ q  ~l-a A-1 ' 

U ' = - - q ~ - a A  -~, A = - ~ 2 v - - y P ,  (9) 

we find that the f i r s t  two equations can be solved i n -  
dependent ly of the third.  The point  ~ = 0, P = 0, v -1= 
= 0 is a s ingu la r  point  of sys t em (9). To cons t ruc t  the 
solut ion in the neighborhood of this point, we make 
the change of va r i ab l e s  

s = ~  2, A = ~ l - ~ / 2 v - 1 ,  B = y p v - 1 ,  

af ter  which the f i r s t  two equations take the form 

dA qA a + (1 - - a / 2 ) A s ( B - - s )  

ds 2s ~ (B - -  s) 

dB qA 2 (B -4- y s) 

ds 2s ~ (B - -  s) 
(10) 

It is r equ i r ed  to find a solut ion sa t i s fy ing  the con-  
di t ions 

A ( 0 ) = 0 ,  B ( 0 ) = 0 .  

Only t r a j e c t o r i e s  en te r ing  the s ingu la r  point  at a 
ce r t a in  tangent  have physica l  mean ing .  With A = ks, 
B = ls f rom (10) we obtain the following pa i r s  of pos -  
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s ib le  values for the d i rec t ion  numbe r s  of the tangents  
k, l: 

1) kt =/ (1  +a/2)[(1 + a/2)y--(1--a/2)] lV~ 

t (1 - -  a/2) q ] 

l~ = ~ l + a/2 ,. 
1 - -  a/2 

2) k ~ = - - k l ,  12=ll ;  

- -  / ~ - - 1  3) any lakal 3 = 0 ;  

4) k , = 0 ,  l , = 0 ,  (11) 

Only the f i r s t  pa i r  gives a t r a j e c t o r y  that can be 
in t e rp re ted  as a solut ion of the p rob lem in  the ne igh-  
borhood of the ga s -vacuum in te r face .  This solut ion 
has the form 

~-1-~/2 (I + a / 2 )  ~ l - a / ~  

kl ' (1 - -  a/2) kl ' 

U (1 + a/2) ~-~ 
= (12) (a/2) k, 

4. Introduct ion of  shock wave.  T r a j e c t o r y  (12) does 
not sa t is fy  the condit ions on the boundary  at ~ = 1. 
Accordingly  we seek a discont inuous solut ion of the 
problem with a shock wave at ~ = ~. .  The s ta tes  of the 
gas to the left and r ight  of the wave front  a re  l inked 
by the Hugoniot r e la t ions .  Solved for the p a r a m e t e r s  
to the r ight  of the front ,  these r e l a t ions  take the fo rm 

2 1 
P+= ~-45 ~ ~- ~-~ +1P-' 

u§ = u_ + ! ( p +  _p_), 

1 
v+ ---- v_ - -  (U+ - -  U.). (13) 

Here,  the plus sign denotes va lues  of the p a r a m e t e r s  
to the r ight  of the front ,  and the minus  sign, va lues  
to the left. 

To sa t i s fy  the two condit ions at ~ = 1, it is n e c e s -  
s a r y  to have two p a r a m e t e r s .  As these  p a r a m e t e r s  
we can take ~.  and a.  

We in t roduce two aux i l i a ry  funct ions c h a r a c t e r i z i n g  
the degree  of nonsa t i s fac t ion  of the boundary  condi -  
t ions:  

z l = l - P v ~  -1, z ~ = l - - v - - U  ( a t  ~=1) .  (14) 

The solut ion a lgor i thm cons i s t s  in f inding the ~, and a 
that reduce  z I and z 2 to zero.  For' this purpose  we use 
the method of descent  in the plane (~., a) with r e spec t  
to the gradient  of the funct ion go(~., ~) = z] + z 2. 

5. Calcula t ion of flow af ter  d i scon t inuance  of the 
ene rgy  r e l e a s e .  Calcula t ion of the flow cor re spond ing  
to cessa t ion  of energy  r e l e a se  is  of  i n t e r e s t  in con-  
nec t ion  with the study of the behavior  of the shock 
wave. This ca lcula t ion cons i s t s  in the n u m e r i c a l  so lu -  
t ion of the boundary  value p rob lem for  sys tem (1) with 
Q = 0 in the ha l f - s t r i p  {0 __< m _< Dts, t _> ts}, where 
t s is the momen t  at which energy  r e l e a s e  is d i s con -  
t inued.  The solut ion is obtained by means  of a f i n i t e -  



Fig. 2. 
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p r e s s u r e  prof i les  in the gas:  1) at t / t  s = 1; 

2) 2.0311; 3) 3.1616; 4) 4.115. 

d i f fe rence  scheme,  which makes  it poss ib le  to d i s r e -  
gard  d i scon t inu i t i e s .  

A check indica tes  d i sp l acemen t  of the shock wave 
toward the wall .  However,  as a r e su l t  of the in tense  
mot ion  of the en t i r e  m a s s  of gas in the d i rec t ion  of 
the vacuum,  a high degree  of r a r e f ac t i on  develops in 
the reg ion  ad jacent  to the wall .  This  r e su l t s  in the 
p r e s s u r e  at the shock f ront  fa i l ing to negl ig ib ly  smal l  
va lues .  

6. Example .  F igure  2 p r e s e n t s  the d i m e n s i o n l e s s  
p r e s s u r e  prof i les  obtained as  a r e s u l t  of the n u m e r i c a l  
solut ion of a v a r i a n t  with the following s t a r t i ng  data: 

Calcula t ion of the s e l f - s i m i l a r  r eg ime  (in the f i r s t  
s tage of the solution) gave values  of ~, and a equal to 
0.3034 and 0.6180, r e spec t ive ly .  The co r re spond ing  
p r e s s u r e  prof i le  is r e p r e s e n t e d  by curve  1. Curves  2, 
3, and 4, obtained in the second stage of the solut ion,  
i l l u s t r a t e  the development  of the shock wave. The t ime 
dependence of the c h a r a c t e r i s t i c  p r e s s u r e s  is given in 
the table.  

P r e s s u r e  at Shock F ron t  and P r e s s u r e  on Wall 
as Funct ions  of T ime  

D i m e n s i o n l e s s  Pressure  at Pressure  o n  
Curve  t i m e  t / ts-1  s h o c k  f r o n t  wal l  

1 

3 
4 

0 �84 
0.5002 
1.0311 
1.5776 
2.1616 
3.1150 
5.8140 

15.616 

1.2776 
0.8777 
0.7264 
0.5963 
0.3584 
0.1558 
0.0302 
0.0053 

0.4073.10 -1 
0. 2064.10 -1 
0. 9556.10 -~- 
0.5932.10 -2 
0.4136.10 -3 
0.2706.10 -3 
0.1298.10 -3 
0.4004.10 -s 

The example indica tes  that the act ion of the flow on 
the wall is ma in ly  de t e rmined  by the p r e s s u r e  de -  
veloped when the source  is funct ioning and that the 
af teref fec t  of the source  is  only sl ight .  

NOTATION 

m is the m a s s  Lagrangian  coordinate  ; t is the t ime  ; 
u is the gas veloci ty ;  p is the p r e s s u r e ;  V is the spe -  
cific volume of the gas ;  p is the gas dens i ty ;  T1 is the 
sub l ima t ion  t e m p e r a t u r e  of the wall  m a t e r i a l ;  pt is 
the densi ty  of the wall  m a t e r i a l ;  c 1 is the specif ic  
heat of the wall  m a t e r i a l ;  R is the gas constant ;  w is 
the ra te  of decomposi t ion  of the wall ;  To is the ini t ia l  
t e m p e r a t u r e  of the wall ;  k is the la tent  heat of sub-  
l ima t ion ;  7 is the ra t io  of specif ic  heats  of the gas ; 
Q = Q(m, t) is the source  function,  exp re s s ing  the 
amount  of energy  r e l ea sed  per  unit  m a s s  pe r  uni t  
t i me ;  m = f(t) is the equation of the ga s - so l i d  i n t e r -  
face.  
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