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A self-similar solution with shock wave is found for the Lagrange
equations of motion of a perfect gas in which energy is released. This
solution is continued by means of a difference scheme.

This paper is concerned with a gasdynamic model
of the process of sublimation of a wall located in a
vacuum in the presence of energy release in the wall
material. The simulation of the process is divided
into two parts: 1) calculation of the dispersion of the
gaseous products with simultaneous energy release,
and 2) calculation of the gas flow after the energy
sources have ceased to act. The function Q which de~
scribes the power of the sources is so selected that
the decomposition of the wall proceeds at a constant
rate. In this case, the first of the two problems men-
tioned above is self-similar, and its solution reduces
to ordinary differential equations; the second problem
employs the results of-the solution of the first as in-
itial data.

1. Formulation of the problem. We have to solve
the system of equations describing the motion of a
perfect gas in which energy is released:
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On one side the gas is bounded by the sublimation sur-
face; on the other its boundary is free (Fig. 1). At the
free boundary

p=0, p=0 at m=0. (2)
The conditions at the sublimation surface include
the mass balance equation and the temperature con-
dition
plw—uw)=pw, p=RpT, at m=7f(). (3)
The position of the phase interface is determined
from the equation

§Q(f(t), tydt = A+ ¢ (Ty—To) = e (4)
8

The sublimation temperature T, is assumed known
and independent of pressure. For many actual ma-
terials, this dependence is so weak that it can be
neglected.

2. Self-similar regime. The initjal instant of gas
phase formation is denoted by t = 0. The point m =
=0, t =0 is a singular point of the solution of prob-
lem (1)—(3); at this point, the parameters of the gas
are not uniquely determined, since both boundaries
which figure in the conditions of the problem pass
through the point. This prompts us to seek a self-
similar solution.

The dependence of Q on m and t is assumed to take
the form

Q =Cm—ot*', (5)

which for 0 < @ < 1 expresses the decrease in the en-
ergy released with respect to mass and time. Then
the determining parameters of the problem are

m, t, p, RT,, e C, o ¥.
Apart from m and t, there are only two constants with
independent dimensions; consequently, for such ener-
gy release the problem has a self-similar solution.

From Eq. (4) with a > 0 it follows that the phase
interface moves uniformly into the subliming material:

f@&) =Dt

where

D = (ag)/eC®

is the mass velocity of the interface. From the cor-
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Fig. 1. Variation of the position of the gas-solid
boundaries: 1) solid; II) gas; 1) vacuum.
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responding expression for C we can obtain an expres-
sion for the function Q corresponding to motion of the
interface at a given velocity D:

Q=aeD*mot"" (a>0).

The choice of the independent dimensionless par-
ameter ¢ and the dependent parameters U, v, and P
is determined by the relations

E=D" mtt, u=ul, V=V, p=pP, (6)

where
g =VD, p,=VD: V,=V,.

Since 8/0t = —(¢£/t)(d/d¢), 8/om = (£/m)(d/dE), sys-
tem (1) can be replaced by a system of three ordinary
differential equations:

—tU 4P =0, 0 +U =0,
oP 4y Pv = —qg ", (7)
where

g=ua(y — l)eSVTzD‘z.

In dimensionless form, the boundary conditions
(2) and (3) become

P=0, vt=0 at g=0,
U=1—v, Pv=1 at g=1. (8)
' -1 -1
Here, 7 = RT1p01V0 is the dimensionless sublimation
temperature .

3. Solution in the neighborhood of £ = 0, Writing
system (7) in the normal form,

V=08 " A, P=—g AT,

U=—g& A, A=Ey—yP, (9)

we find that the first two equations can be solved in-
dependently of the third, The point £ =0, P =0, vi=
= 0 is a singular point of system (9). To construct the
solution in the neighborhood of this point, we make

the change of variables
s=8, A=t""ul B=yPv,

after which the first two equations take the form

dAd  ¢A*+ (1 —a/2) As(B—9)
ds 25> (B — ) '

48 _ A B+ v (10)
ds 928 (B—s)

It is required to find a solution satisfying the con-
ditions

A0)=0, B{(0)=0.
Only trajectories entering the singular point at a
certain tangent have physical meaning. With A = ks,

B = ls from (10) we obtain the following pairs of pos-

552

sible values for the direction numbers of the tangents
k, I:

1) k= [T +02)v—( _a/2)1}1/2 |

(1 —a/2)q

14 a/2
L=y —
1 Yl—a/2

2 ke=—k, L=1;

3) any Lk, k' =0;
4) ky=0, [,=0. (11)
Only the first pair gives a trajectory that can be
interpreted as a solution of the problem in the neigh-

borhood of the gas-vacuum interface. This solution
has the form

_ E-l_“/2 (l +a/2)gl-u/2
V=S P
U= __._(I‘J_ﬂ%:_ . (12)

@k,

4, Introduction of shock wave. Trajectory (12) does
not satisfy the conditions on the boundary at ¢ = 1.
Accordingly we seek a discontinuous solution of the
problem with a shock wave at § = £, . The states of the
gas to the left and right of the wave front are linked
by the Hugoniot relations. Solved for the parameters
to the right of the front, these relations take the form

.= 2 gfv_——v—-lp_,
v+ 1 y+1
Us=U. 4~ (P,—P),
1
0, =V, —— (U, —U). (13)

%

Here, the plus sign denotes values of the parameters
to the right of the front, and the minus sign, values
to the left.

To satisfy the two conditions at £ = 1, it is neces~
sary to have two parameters. As these parameters
we can take £ and «,

We introduce two auxiliary functions characterizing
the degree of nonsatisfaction of the boundary condi-
tions:

z=1—Potl, z=1—v—U (at g=1). (14)

The solution algorithm consists in finding the {, and «
that reduce z; and z, to zero. For this purpose we use
the method of descent in the plane (£, @) with respect
to the gradient of the function ¢(¢,, ) = z} + z.

5. Calculation of flow after discontinuance of the
energy release, Calculation of the flow corresponding
to cessation of energy release is of interest in con-
nection with the study of the behavior of the shock
wave. This calculation consists in the numerical solu-
tion of the boundary value problem for system (1) with
Q = 0 in the half-strip {0 =m < Dtg, t= ts}, where
tg is the moment at which energy release is discon-
tinued. The solution is obtained by means of a finite-
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Fig. 2. Pressure profiles in the gas: 1) att/tg = 1;

2) 2.0311; 3) 3.1616; 4) 4.115.

difference scheme, which makes it possible to disre-
gard discontinuities.

A check indicates displacement of the shock wave
toward the wall. However, as a result of the intense
motion of the entire mass of gas in the direction of
the vacuum, a high degree of rarefaction develops in
the region adjacent to the wall. This results in the
pressure at the shock front falling to negligibly small
values.

6. Example. Figure 2 presents the dimensioniess
pressure profiles obtained as aresult of the numerical
solution of a variant with the following starting data:

Calculation of the self-similar regime (in the first
stage of the solution) gave values of {, and « equal to
0.3034 and 0.6180, respectively. The corresponding
pressure profile is represented by curve 1. Curves 2,
3, and 4, obtained in the second stage of the solution,
illustrate the development of the shock wave. The time
dependence of the characteristic pressures is given in
the table.

Pressure at Shock Front and Pressure on Wall
as Functions of Time

Dimensionless Pressure at Pressure on
Curve time t/tg-1 shock front wall
i 0 1.2776 0.4073.10—1!
— 0.5002 0.8777 0.2064 .10
2 1.0311 0.7264 0.9556.102
— 1.5776 0.5963 0.5932.10-2
3 2.1616 0.3584 0.4136.10—2
4 3.1150 0.1558 0.2706.10—2
— 5.8140 0.0302 0.1298.10—2
— 15.616 0.0053 0.4004.10—3

The example indicates that the action of the flow on
the wall is mainly determined by the pressure de-
veloped when the source is functioning and that the
aftereffect of the source is only slight.

NOTATION

m is the mass Lagrangian coordinate; tisthetime;
u is the gas velocity; p is the pressure; V is the spe-
cific volume of the gas; p is the gas density; Ty is the
sublimation temperature of the wall material; p, is
the density of the wall material; ¢; is the specific
heat of the wall material; R is the gas constant; w is
the rate of decomposition of the wall; T, is the initial
temperature of the wall; A is the latent heat of sub-
limation; vy is the ratio of specific heats of the gas;
Q = Q{m, t) is the source function, expressing the
amount of energy released per unit mass per unit
time; m = f(t) is the equation of the gas-solid inter-
face.
14 February 1967 Dzerzhinskii Military
Engineering Academy
Moscow

553



